Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems
نویسندگان
چکیده
An inexact Newton algorithm for large sparse equality constrained non-linear programming problems is proposed. This algorithm is based on an indefinitely preconditioned smoothed conjugate gradient method applied to the linear KKT system and uses a simple augmented Lagrangian merit function for Armijo type stepsize selection. Most attention is devoted to the termination of the CG method, guaranteeing sufficient descent in every iteration and decreasing the number of required CG iterations, and especially, to the choice of a suitable preconditioner. We investigate four preconditioners, which have 2 × 2 block structure, and prove theoretically their good properties. The efficiency of the inexact Newton algorithm, together with a comparison of various preconditioners and strategies, is demonstrated by using a large collection of test problems. © 1998 John Wiley & Sons, Ltd.
منابع مشابه
A Preconditioned Conjugate Gradient Approach to Linear Equality Constrained Minimization
We propose a new framework for the application of preconditioned conjugate gradients in the solution of large-scale linear equality constrained minimization problems. This framework allows for the exploitation of structure and sparsity in the context of solving the reduced Newton system (despite the fact that the reduced system may be dense).
متن کاملPreconditioned All-at-once Methods for Large, Sparse Parameter Estimation Problems
The problem of recovering a parameter function based on measurements of solutions of a system of partial diierential equations in several space variables leads to a number of computational challenges. Upon discretization of a regularized formulation a large, sparse constrained optimization problem is obtained. Typically in the literature , the constraints are eliminated and the resulting uncons...
متن کاملAn inexact dual logarithmic barrier method for solving sparse semidefinite programs
A dual logarithmic barrier method for solving large, sparse semidefinite programs is proposed in this paper. The method avoids any explicit use of the primal variable X and therefore is well-suited to problems with a sparse dual matrix S. It relies on inexact Newton steps in dual space which are computed by the conjugate gradient method applied to the Schur complement of the reduced KKT system....
متن کاملAn inexact interior point method for L 1-regularized sparse covariance selection
Sparse covariance selection problems can be formulated as log-determinant (log-det ) semidefinite programming (SDP) problems with large numbers of linear constraints. Standard primal-dual interior-point methods that are based on solving the Schur complement equation would encounter severe computational bottlenecks if they are applied to solve these SDPs. In this paper, we consider a customized ...
متن کاملInexact Newton Methods with Restricted Additive Schwarz Based Nonlinear Elimination for Problems with High Local Nonlinearity
The classical inexact Newton algorithm is an efficient and popular technique for solving large sparse nonlinear system of equations. When the nonlinearities in the system are wellbalanced, a near quadratic convergence is often observed, however, if some of the equations are much more nonlinear than the others in the system, the convergence is much slower. The slow convergence (or sometimes dive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 5 شماره
صفحات -
تاریخ انتشار 1998